A Nanopore-Structured Nitrogen-Doped Biocarbon Electrocatalyst for Oxygen Reduction from Two-Step Carbonization of Lemna minor Biomass
نویسندگان
چکیده
So far, the development of highly active and stable carbon-based electrocatalysts for oxygen reduction reaction (ORR) to replace commercial Pt/C catalyst is a hot topic. In this study, a new nanoporous nitrogen-doped carbon material was facilely designed by two-step pyrolysis of the renewable Lemna minor enriched in crude protein under a nitrogen atmosphere. Electrochemical measurements show that the onset potential for ORR on this carbon material is around 0.93 V (versus reversible hydrogen electrode), slightly lower than that on the Pt/C catalyst, but its cycling stability is higher compared to the Pt/C catalyst in an alkaline medium. Besides, the ORR at this catalyst approaches to a four-electron transfer pathway. The obtained ORR performance can be basically attributed to the formation of high contents of pyridinic and graphitic nitrogen atoms inside this catalyst. Thus, this work opens up the path in the ORR catalysis for the design of nitrogen-doped carbon materials utilizing aquatic plants as starting precursors.
منابع مشابه
Heavily Graphitic-Nitrogen Self-doped High-porosity Carbon for the Electrocatalysis of Oxygen Reduction Reaction
Large-scale production of active and stable porous carbon catalysts for oxygen reduction reaction (ORR) from protein-rich biomass became a hot topic in fuel cell technology. Here, we report a facile strategy for synthesis of nitrogen-doped porous nanocarbons by means of a simple two-step pyrolysis process combined with the activation of zinc chloride and acid-treatment process, in which kidney ...
متن کاملThe Use of an Edible Mushroom-Derived Renewable Carbon Material as a Highly Stable Electrocatalyst towards Four-Electron Oxygen Reduction
The development of highly stable and efficient electrocatalysts for sluggish oxygen reduction reaction (ORR) is exceedingly significant for the commercialization of fuel cells but remains a challenge. We here synthesize a new nitrogen-doped biocarbon composite material (N-BC@CNP-900) as a nitrogen-containing carbon-based electrocatalyst for the ORR via facile all-solid-state multi-step pyrolysi...
متن کاملCobalt nanoparticles embedded in N-doped carbon as an efficient bifunctional electrocatalyst for oxygen reduction and evolution reactions.
Cobalt based catalysts are promising bifunctional electrocatalysts for both oxygen reduction and oxygen evolution reactions (ORR and OER) in unitized regenerative fuel cells (URFCs) operating with alkaline electrolytes. Here we report a hybrid composite of cobalt nanoparticles embedded in nitrogen-doped carbon (Co/N-C) via a solvothermal carbonization strategy. With the synergistic effect arisi...
متن کاملActive and stable carbon nanotube/nanoparticle composite electrocatalyst for oxygen reduction
Nanostructured carbon-based materials, such as nitrogen-doped carbon nanotube arrays, Co3O4/nitrogen-doped graphene hybrids and carbon nanotube-graphene complexes have shown respectable oxygen reduction reaction activity in alkaline media. Although certainly promising, the performance of these materials does not yet warrant implementation in the energy conversion/storage devices utilizing basic...
متن کاملHarvesting a 3D N-Doped Carbon Network from Waste Bean Dregs by Ionothermal Carbonization as an Electrocatalyst for an Oxygen Reduction Reaction
Three-dimensional nitrogen-doped carbon (3D-NCN) has been synthesized via the ionothermal carbonization method using waste soybean dregs (SD) as the precursor. N₂ adsorption/desorption isotherms show that the as-prepared 3D-NCN formed a hierarchically porous structure with a specific BET surface area of 1093.4 m² g-1 and a total pore volume of 1.77 cm³ g-1. The TEM images clearly show that grap...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 11 شماره
صفحات -
تاریخ انتشار 2016